Normal Galaxies & Starburst Galaxies

Magnetized Threads Weave Spectacular Galactic Tapestry

Image of our Galactic Center
The Galactic Center of the Milky Way
Credit: X-ray: NASA/CXC/UMass/Q.D. Wang; Radio: NRF/SARAO/MeerKAT

Threads of superheated gas and magnetic fields are weaving a tapestry of energy at the center of the Milky Way galaxy. A new image of this new cosmic masterpiece was made using a giant mosaic of data from NASA's Chandra X-ray Observatory and the MeerKAT radio telescope in South Africa.

The new panorama of the Galactic Center builds on previous surveys from Chandra and other telescopes. This latest version expands Chandra's high-energy view farther above and below the plane of the Galaxy — that is, the disk where most of the Galaxy's stars reside — than previous imaging campaigns. In the image featured in our main graphic, X-rays from Chandra are orange, green, blue and purple, showing different X-ray energies, and the radio data from MeerKAT are shown in lilac and gray. The main features in the image are shown in a labeled version.

Data Sonification: Stellar, Galactic, and Black Hole


More Information
Sonification Credit: NASA/CXC/SAO/K. Arcand, SYSTEM Sounds (M. Russo, A. Santaguida)


This latest installment from our data sonification series features three diverse cosmic scenes. In each, astronomical data collected by NASA's Chandra X-ray Observatory and other telescopes are converted into sounds. Data sonification maps the data from these space-based telescopes into a form that users can hear instead of only see, embodying the data in a new form without changing the original content.

NASA's Chandra Opens Treasure Trove of Cosmic Delights

Six images in a montage
Chandra Archive Collection: A Montage of Light From Space
Credit: NASA/CXC/SAO, NASA/STScI, NASA/JPL-Caltech/SSC, ESO/NAOJ/NRAO, NRAO/AUI/NSF, NASA/CXC/SAO/PSU, and NASA/ESA

Humanity has "eyes" that can detect all different types of light through telescopes around the globe and a fleet of observatories in space. From radio waves to gamma rays, this "multiwavelength" approach to astronomy is crucial to getting a complete understanding of objects in space.

This compilation gives examples of images from different missions and telescopes being combined to better understand the science of the universe. Each of these images contains data from NASA's Chandra X-ray Observatory as well as other telescopes. Various types of objects are shown (galaxies, supernova remnants, stars, planetary nebulas), but together they demonstrate the possibilities when data from across the electromagnetic spectrum are assembled.

Traveling to Our Galactic Center Through Virtual Reality

Image of Nobel Laureate Prof. Kip Thorne exploring the the VR app, assisted by Dr. Christopher Russell.
Nobel Laureate Prof. Kip Thorne
exploring the the VR app, assisted
by Dr. Christopher Russell.

"Galactic Center VR" is an astronomy outreach app available now from the Steam and Viveport virtual reality (VR) stores. What is in this VR experience, and how did it come about? Dr. Christopher Russell, Director of the VR Lab at the Instituto de Astrofísica, Pontificia Universidad Católica de Chile (PUC), tells us in this blog post.

"Galactic Center VR" (GCVR) transports you 26,000 light years away to the center of our Milky Way. This fully immersive VR experience lets you explore our NASA supercomputer simulations of the central three light years around Sagittarius A* (Sgr A*), our galaxy's supermassive black hole. While the black hole is the region's dominant feature, the visual appeal comes from the complex structure of colliding winds from 25 massive stars, much of which is heated by shocks — akin to sonic booms from supersonic aircraft — to be aglow in X-rays and therefore studied with NASA's Chandra X-ray Observatory.

X-Rays Help Prove Some Galaxies are True Relics of the Ancient Universe

Professor David Buote
Professor David Buote

We welcome Professor David Buote as our guest blogger. Buote was one of the first Chandra Postdoctoral Fellows and is now a Professor at the University of California at Irvine. He has studied X-rays from massive elliptical galaxies and galaxy clusters since the time he was a graduate student. His new work with Aaron Barth on the dark matter in a relic elliptical galaxy is the subject of our latest press release.

This year marks the 20th anniversary of the Chandra X-ray Observatory and a chance to celebrate its many and diverse accomplishments. A critical aspect of Chandra's impact on astrophysics is its synergies with observations of phenomena throughout the electromagnetic (EM) spectrum and through other channels like gravity waves and neutrinos. Our study highlights how studies of the X-ray emission of a rare type of galaxy complement and augment what has been learned from observations of the stellar light at longer wavelengths.

Galaxies are broadly divided into two types — disks and spheroids — with substantial overlap in their properties. The spheroids — or elliptical galaxies — are approximately round but range in shape as observed on the sky from nearly circular to elongated somewhat like an American football viewed from the side. Most of what we know about the stars in galaxies comes from observations of visible light photons with lots of help from observations in the nearby ultraviolet and infrared (IR) parts of the EM spectrum.

Heart of Lonesome Galaxy is Brimming with Dark Matter

Image of Mrk 1216
Markarian 1216
Credit: X-ray: NASA/CXC/Univ. of CA Irvine/D. Buote; Optical: NASA/STScI

Data from NASA's Chandra X-ray Observatory (left) have helped astronomers reveal that a galaxy has more dark matter packed into its core than expected after being isolated for billions of years, as reported in our press release. The image on the right shows the galaxy called Markarian 1216 (abbreviated as Mrk 1216) in visible light from NASA's Hubble Space Telescope over the same field of view.

Mrk 1216 belongs to a family of elliptically shaped galaxies that are more densely packed with stars in their centers than most other galaxies. Astronomers think they have descended from red, compact galaxies called "red nuggets" that formed about a billion years after the Big Bang, but then stalled in their growth about 10 billion years ago.

Storm Rages in Cosmic Teacup

The Teacup
The Teacup, SDSS J1430+1339
Credit: X-ray: NASA/CXC/Univ. of Cambridge/G. Lansbury et al; Optical: NASA/STScI/W. Keel et al.

Fancy a cup of cosmic tea? This one isn't as calming as the ones on Earth. In a galaxy hosting a structure nicknamed the "Teacup," a galactic storm is raging.

The source of the cosmic squall is a supermassive black hole buried at the center of the galaxy, officially known as SDSS 1430+1339. As matter in the central regions of the galaxy is pulled toward the black hole, it is energized by the strong gravity and magnetic fields near the black hole. The infalling material produces more radiation than all the stars in the host galaxy. This kind of actively growing black hole is known as a quasar.

The Whirlpool Galaxy Like You’ve Never Seen It Before

NASA's Universe of Learning, or UoL, provides resources and experiences that enable youth, families, and lifelong learners to explore fundamental questions in science, experience how science is done, and discover the Universe for themselves.

To make this goal a reality, this consortium of professional scientists, educators, visualizers, and more work together to create resources for anyone interested in learning about our Universe. The latest product from the UoL is a new visualization of Messier 51, also known as the Whirlpool galaxy. Located about 30 million light years from Earth, the Whirlpool galaxy is a spiral like our own Milky Way.

Whirlpool Galaxy

The Whirlpool Galaxy, M51
Credit: X-ray: NASA/CXC/Wesleyan Univ./R.Kilgard, et al; Optical: NASA/STScI

Chandra Serves up Cosmic Holiday Assortment

This is the season of celebrating, and the Chandra X-ray Center has prepared a platter of cosmic treats from NASA's Chandra X-ray Observatory to enjoy. This selection represents different types of objects — ranging from relatively nearby exploded stars to extremely distant and massive clusters of galaxies — that emit X-rays detected by Chandra. Each image in this collection blends Chandra data with other telescopes, creating a colorful medley of light from our Universe.

Pages

Disclaimer: This service is provided as a free forum for registered users. Users' comments do not reflect the views of the Chandra X-ray Center and the Harvard-Smithsonian Center for Astrophysics.
Please note this is a moderated blog. No pornography, spam, profanity or discriminatory remarks are allowed. No personal attacks are allowed. Users should stay on topic to keep it relevant for the readers.
Read the privacy statement