By Definition
High Definition
Standard Definition
4K UHD
By Length
Full (4-12 min)
Short (1-4 min)
By Date
2021 | 2020 | 2019 | 2018
2017 | 2016 | 2015 | 2014
2013 | 2012 | 2011 | 2010
2009 | 2008 | 2007 | 2006
By Category
Solar System
Stars
White Dwarfs
Supernovas
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Quasars
Groups of Galaxies
Cosmology/Deep Field
Miscellaneous
HTE
STOP
Space Scoop for Kids!
Chandra Sketches
Light
AstrOlympics
Quick Look
Visual Descriptions
Subscribe
How To
RSS Reader
Audio-only format podcast
Web Shortcuts
Chandra Blog
RSS Feed
Chronicle
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Recent Podcast
Quick Look: Jingle, Pluck, and Hum: Sounds from Space
Quick Look: Jingle, Pluck, and Hum: Sounds from Space
A "sonification" project led by NASA's Chandra X-ray Observatory and the Universe of Learning transforms otherwise inaudible data from some of the world's most powerful telescopes into sound. (2021-09-16)


Tour: V404 Cygni

View/Listen
A spectacular set of rings around a black hole has been captured using NASA's Chandra X-ray Observatory and Neil Gehrels Swift Observatory. The X-ray images of the giant rings have revealed new information about dust located in our Galaxy, using a similar principle to the X-rays performed in doctor's offices and airports.

The black hole is part of a binary system called V404 Cygni, located about 7,800 light-years away from Earth. The black hole is actively pulling material away from a companion star — with about half the mass of the Sun — into a disk around the invisible object. This material glows in X-rays, so astronomers refer to these systems as "X-ray binaries."

On June 5, 2015, Swift discovered a burst of X-rays from V404 Cygni. The burst created the high-energy rings from a phenomenon known as light echoes. Instead of sound waves bouncing off a canyon wall, the light echoes around V404 Cygni were produced when a burst of X-rays from the black hole system bounced off of dust clouds between V404 Cygni and Earth. Cosmic dust is not like household dust but is more like smoke, and consists of tiny, solid particles.

The team analyzed 50 Swift observations made in 2015 between June 30 and August 25. Chandra observed the system on July 11 and 25. It was such a bright event that the operators of Chandra purposely placed V404 Cygni in between the detectors so that another bright burst would not damage the instrument.

The rings tell astronomers not only about the black hole's behavior, but also about the landscape between V404 Cygni and Earth. For example, the diameter of the rings in X-rays reveals the distances to the intervening dust clouds the light ricocheted off. If the cloud is closer to Earth, the ring appears to have a larger diameter and vice versa. The light echoes appear as narrow rings rather than wide rings or haloes because the X-ray burst lasted only a relatively short period of time. The researchers also used the rings to probe the properties of the dust clouds themselves.

This result is another example of the many different ways that the Chandra X-ray Observatory can be used to help us explore the mysteries of the Universe.

Return to Podcasts