News by Date
News by Category
Solar System
White Dwarfs
Neutron Stars
Black Holes
Milky Way Galaxy
Normal Galaxies
Galaxy Clusters
Cosmology/Deep Field
Press Resources
Status Reports
Press Advisories
Image Releases
Release Guidelines
Image Use Policy
Web Shortcuts
Chandra Blog
RSS Feed
Email Newsletter
News & Noteworthy
Image Use Policy
Questions & Answers
Glossary of Terms
Download Guide
Get Adobe Reader
Related Links

Chandra @ NASA
Visit the Chandra pages at the NASA portal (opens in new window)
Image Use
Image Use Policy & Request Form
Guidelines for utilizing images, applets, movies, and animations featured in this Web Site.
Chandra and XMM-Newton Provide Direct Measurement of Distant Black Hole's Spin

For Release: March 05, 2014


IGR J11014-6103
X-ray: X-ray: NASA/CXC/Univ of Michigan/R.C.Reis et al; Optical: NASA/STScI
Press Image and Caption

Astronomers have used NASA's Chandra X-ray Observatory and the European Space Agency's (ESA's) XMM-Newton to show a supermassive black hole six billion light years from Earth is spinning extremely rapidly. This first direct measurement of the spin of such a distant black hole is an important advance for understanding how black holes grow over time.

Black holes are defined by just two simple characteristics: mass and spin. While astronomers have long been able to measure black hole masses very effectively, determining their spins has been much more difficult.

In the past decade, astronomers have devised ways of estimating spins for black holes at distances greater than several billion light-years away, meaning we see the region around black hole as they were billions of years ago. However, determining the spins of these remote black holes involves several steps that rely on one another.

"We want to be able to cut out the middle man, so to speak, of determining the spins of black holes across the universe," said Rubens Reis of the University of Michigan in Ann Arbor, who led a paper describing this result that was published online Wednesday in the journal Nature.

Reis and his colleagues determined the spin of the supermassive black hole that is pulling in surrounding gas, producing an extremely luminous quasar known as RX J1131-1231 (RX J1131 for short). Because of fortuitous alignment, the distortion of space-time by the gravitational field of a giant elliptical galaxy along the line of sight to the quasar acts as a gravitational lens that magnifies the light from the quasar. Gravitational lensing, first predicted by Einstein, offers a rare opportunity to study the innermost region in distant quasars by acting as a natural telescope and magnifying the light from these sources.

"Because of this gravitational lens, we were able to get very detailed information on the X-ray spectrum – that is, the amount of X-rays seen at different energies – from RX J1131," said co-author Mark Reynolds also of Michigan. "This in turn allowed us to get a very accurate value for how fast the black hole is spinning."

The X-rays are produced when a swirling accretion disk of gas and dust that surrounds the black hole creates a multimillion-degree cloud, or corona near the black hole. X-rays from this corona reflect off the inner edge of the accretion disk. The strong gravitational forces near the black hole alter the reflected X-ray spectrum. The larger the change in the spectrum, the closer the inner edge of the disk must be to the black hole.

"We estimate that the X-rays are coming from a region in the disk located only about three times the radius of the event horizon, the point of no return for infalling matter," said Jon M. Miller of Michigan, another author on the paper. "The black hole must be spinning extremely rapidly to allow a disk to survive at such a small radius."

For example, a spinning black hole drags space around with it and allows matter to orbit closer to the black hole than is possible for a non-spinning black hole.

By measuring the spin of distant black holes researchers discover important clues about how these objects grow over time. If black holes grow mainly from collisions and mergers between galaxies, they should accumulate material in a stable disk, and the steady supply of new material from the disk should lead to rapidly spinning black holes. In contrast, if black holes grow through many small accretion episodes, they will accumulate material from random directions. Like a merry go round that is pushed both backwards and forwards, this would make the black hole spin more slowly.

The discovery that space-time at the black hole's event horizon is spinning at over half the speed of light suggests that RX J1131, observed at a distance of six billion light years, corresponding to an age about 7.7 billion years after the Big Bang, has grown via mergers, rather than pulling material in from different directions.

The ability to measure black hole spin over a large range of cosmic time should make it possible to directly study whether the black hole evolves at about the same rate as its host galaxy. The measurement of the spin of the RX J1131-1231 black hole is a major step along that path and demonstrates a technique for assembling a sample of distant supermassive black holes with current X-ray observatories.

Prior to the announcement of this work, the most distant black holes with direct spin estimates were located 2.5 billion and 4.7 billion light-years away.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra's science and flight operations.

For Chandra images, multimedia and related materials, visit:

For an additional interactive image, podcast, and video on the finding, visit:

Media contacts:
J.D. Harrington
Headquarters, Washington

Megan Watzke
Chandra X-ray Center, Cambridge, Mass.

Visitor Comments (17)

How long could the theoretical singularity have existed before the theoretical Big Bang occurred?

Posted by Wade Born on Friday, 01.27.17 @ 12:03pm

Just remember the black hole quasar is actually just one of the pink blobs - the other pink blobs and the ring around the central foreground object are caused by gravitational bending of the light. The ring and the central object are not the black hole - though it kinda looks like a hole.

Posted by David on Monday, 06.22.15 @ 19:18pm

Excellent article. Beautiful Image. Very informative, thank you

Posted by Ben Bowen on Tuesday, 04.14.15 @ 21:28pm

Is this the first photo of a quasar?

Posted by Jay on Saturday, 01.10.15 @ 21:44pm

How intruiging it is.

Posted by Jun-Young Lee on Wednesday, 10.8.14 @ 14:25pm

So what is on the other side of the black hole? I'm very new to all this so very curious. Does everything that goes into a black hole disintegrate? What would a scientist actually expect to see if man could actually make it thru a black hole? Might be a stupid question to some, but is that not how we learn?

Posted by Cindy Reynante on Wednesday, 07.23.14 @ 19:33pm

I like knowing about the black hole.

Posted by rachel on Monday, 05.19.14 @ 03:32am

Always been fascinated with black holes. To me they are natures universe reactors. After all, each one has,theoretically, infinite mass. ie. a singularity. Just as our own universe was a singularity of infinite mass and energy milliseconds before the big bang . Maybe what we are observing in a black hole is actually the back side of yet another big bang....and yet...the natural manufacture of another universe on its other side.

Posted by matthew storer on Tuesday, 05.6.14 @ 04:14am

Is this an image created from real data or an artists impression?

Posted by Tom on Thursday, 05.1.14 @ 01:36am

Curve that occurs in space is appreciated, it's like when you throw a stone into the water.

Posted by wilson piriz on Thursday, 04.17.14 @ 09:41am

I really like black holes.
I never thought that I would ever be able to actually see a black hole's effects in a photograph.

Posted by Mike Nemec on Wednesday, 04.9.14 @ 19:39pm

Hello, it's beautiful, all of Nature is beautiful. I have a question about gravity density, can it ever be described as compressed compression pressure density?

Posted by JJM on Friday, 03.7.14 @ 20:13pm

Very interesting. Thanks for posting this.
Keep up the good work, cheers

Posted by Gabriel on Friday, 03.7.14 @ 10:25am

Good work.
You don't mention the approximate mass of the black hole.

Posted by kopernik on Thursday, 03.6.14 @ 10:40am

This result is important because black holes are defined by just two simple characteristics, mass and spin.

Posted by Nick on Thursday, 03.6.14 @ 08:41am

That is fantastic.

Posted by Afonso Loureiro on Wednesday, 03.5.14 @ 16:53pm

Doesn't a black hole possess linear a third property.
This would be useful in studying them how starlight from behind them changes with the black hole's forward velocity. Maybe more topics.
Thank you

Posted by bob howard on Wednesday, 03.5.14 @ 14:58pm